2 research outputs found

    Using image morphing for memory-efficient impostor rendering on GPU

    Get PDF
    Real-time rendering of large animated crowds consisting thousands of virtual humans is important for several applications including simulations, games and interactive walkthroughs; but cannot be performed using complex polygonal models at interactive frame rates. For that reason, several methods using large numbers of pre-computed image-based representations, which are called as impostors, have been proposed. These methods take the advantage of existing programmable graphics hardware to compensate the computational expense while maintaining the visual fidelity. Making the number of different virtual humans, which can be rendered in real-time, not restricted anymore by the required computational power but by the texture memory consumed for the variety and discretization of their animations. In this work, we proposed an alternative method that reduces the memory consumption by generating compelling intermediate textures using image-morphing techniques. In order to demonstrate the preserved perceptual quality of animations, where half of the key-frames were rendered using the proposed methodology, we have implemented the system using the graphical processing unit and obtained promising results at interactive frame rates

    Real-time feature-based image morphing for memory-efficient impostor rendering and animation on GPU

    No full text
    Real-time rendering of large animated crowds consisting of thousands of virtual humans is important for several applications including simulations, games, and interactive walkthroughs but cannot be performed using complex polygonal models at interactive frame rates. For that reason, methods using large numbers of precomputed image-based representations, called impostors, have been proposed. These methods take advantage of existing programmable graphics hardware to compensate for computational expense while maintaining visual fidelity. Thanks to these methods, the number of different virtual humans rendered in real time is no longer restricted by computational power but by texture memory consumed for the variety and discretization of their animations. This work proposes a resource-efficient impostor rendering methodology that employs image morphing techniques to reduce memory consumption while preserving perceptual quality, thus allowing higher diversity or resolution of the rendered crowds. Results of the experiments indicated that the proposed method, in comparison with conventional impostor rendering techniques, can obtain 38 % smoother animations or 87 % better appearance quality by reducing the number of key-frames required for preserving the animation quality via resynthesizing them with up to 92 % similarity on real time
    corecore